Bayesian Multi-Scale Optimistic Optimization

نویسندگان

  • Ziyu Wang
  • Babak Shakibi
  • Lin Jin
  • Nando de Freitas
چکیده

where σ T (x) = κ(x,x) − k1:T (x)K−1k1:T (x) and this bound is tight. Moreover, σ T (x) is the posterior predictive variance of a Gaussian process with the same kernel. Lemma 3 (Adapted from Proposition 1 of de Freitas et al. (2012)). Let κ : R × R → R be a kernel that is twice differentiable along the diagonal {(x,x) |x ∈ RD}, with L defined as in Lemma 1.1, and f be an element of the RKHS with kernel κ. If f is evaluated at point x, then for any other point y we have σT (y) ≤ L�x− y�.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangulation of Moral Graph Using Bayesian Optimization Algorithm

Finding the optimistic triangulation in Bayesian network, is NP hard. Bayesian Optimization Algorithm is a new kind of evolutionary algorithm estimation of distribution algorithms (EDAs). An improved BOA is proposed to get approximate optimistic triangulation in this paper. We carry out four EDAs including our method, on four standard Bayesian networks. Comparing with other Estimation of distri...

متن کامل

Simulation Studies in Optimistic Bayesian Sampling in Contextual-Bandit Problems

This technical report accompanies the article “Optimistic Bayesian Sampling in Contextual-Bandit Problems” by B.C. May, N. Korda, A. Lee, and D.S. Leslie [3].

متن کامل

Multiple utility constrained multi-objective programs using Bayesian theory

A utility function is an important tool for representing a DM’s preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utili...

متن کامل

Multi-scale exploration of convex functions and bandit convex optimization

We construct a new map from a convex function to a distribution on its domain, with the property that this distribution is a multi-scale exploration of the function. We use this map to solve a decadeold open problem in adversarial bandit convex optimization by showing that the minimax regret for this problem is Õ(poly(n) √ T ), where n is the dimension and T the number of rounds. This bound is ...

متن کامل

Bayesian Optimization with Robust Bayesian Neural Networks

Bayesian optimization is a prominent method for optimizing expensive-to-evaluate black-box functions that is widely applied to tuning the hyperparameters of machine learning algorithms. Despite its successes, the prototypical Bayesian optimization approach – using Gaussian process models – does not scale well to either many hyperparameters or many function evaluations. Attacking this lack of sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014